segunda-feira, 21 de fevereiro de 2011

Temos uma vitória arrasadora em nossa enquete, os eclipses ganharam com vantagem de seus concorrentes!!!

Logo teremos outra enquete para vocês votarem!!!                                          AGUARDEM!!!


                                                                                                                                                Lucas

segunda-feira, 18 de outubro de 2010

História da Astronomia





Na parte inicial da sua história, a astronomia envolveu somente a observação e a previsão dos movimentos dos objetos no céu que podiam ser vistos a olho nu. O Rigveda refere-se aos 27 asterismos ou nakshatras associados aos movimentos do Sol e também às 12 divisões zodiacais do céu. Os antigos gregos fizeram importantes contribuições para a astronomia, entre elas a definição de magnitude aparente. A Bíblia contém um número de afirmações sobre a posição da Terra no universo e sobre a natureza das estrelas e dos planetas, a maioria das quais são poéticas e não devem ser interpretadas literalmente; ver Cosmologia Bíblica. Nos anos 500, Aryabhata apresentou um sistema matemático que considerava que a Terra rodava em torno do seu eixo e que os planetas se deslocavam em relação ao Sol.
O estudo da astronomia quase parou durante a Idade Média, à exceção do trabalho dos astrónomos árabes. No final do século IX, o astrónomo árabe al-Farghani (Abu'l-Abbas Ahmad ibn Muhammad ibn Kathir al-Farghani) escreveu extensivamente sobre o movimento dos corpos celestes. No século XII, os seus trabalhos foram traduzidos para o latim, e diz-se que Dante aprendeu astronomia pelos livros de al-Farghani.
No final do Século X, um observatório enorme foi construído perto de Teerã, Irã, pelo astrônomo al-Khujandi, que observou uma série de trânsitos meridianos do Sol, que permitiu-lhe calcular a obliquidade da eclíptica, também conhecida como a inclinação do eixo da Terra relativamente ao Sol. Como sabe-se hoje, a inclinação da Terra é de aproximadamente 23°34', e al-Khujandi mediu-a como sendo 23°32'19". Usando esta informação, compilou também uma lista das latitudes e das longitudes de cidades principais.
Omar Khayyam (Ghiyath al-Din Abu'l-Fath Umar ibn Ibrahim al-Nisaburi al-Khayyami) foi um grande cientista, filósofo e poeta persa que viveu de 1048 a 1131. Compilou muitas tabelas astronômicas e executou uma reforma do calendário que era mais exato do que o Calendário Juliano e se aproximava do Calendário Gregoriano. Um feito surpreendente era seu cálculo do ano como tendo 365,24219858156 dias, valor esse considerando a exatidão até a sexta casa decimal se comparado com os números de hoje, indica que nesses 1000 anos pode ter havido algumas alterações na órbita terrestre.
Durante o Renascimento, Copérnico propôs um modelo heliocêntrico do Sistema Solar. No século XIII, o imperador Hulagu, neto de Gengis Khan e um protetor das ciências, havia concedido ao conselheiro Nasir El Din Tusi autorização para edificar um observatório considerado sem equivalentes na época. Entre os trabalhos desenvolvidos no observatório de Maragheg e a obra "De Revolutionibus Orbium Caelestium" de Copérnico, há algumas semelhanças que levam os historiadores a admitir que este teria tomado conhecimento dos estudos de Tusi, através de cópias de trabalhos deste existentes no Vaticano.
O modelo heliocêntrico do Sistema Solar foi defendido, desenvolvido e corrigido por Galileu Galilei e Johannes Kepler. Kepler foi o primeiro a desenvolver um sistema que descrevesse corretamente os detalhes do movimento dos planetas com o Sol no centro. No entanto, Kepler não compreendeu os princípios por detrás das leis que descobriu. Estes princípios foram descobertos mais tarde por Isaac Newton, que mostrou que o movimento dos planetas se podia explicar pela Lei da gravitação universal e pelas leis da dinâmica.
Constatou-se que as estrelas são objetos muito distantes. Com o advento da Espectroscopia provou-se que são similares ao nosso próprio Sol, mas com uma grande variedade de temperaturas, massas e tamanhos. A existência de nossa galáxia, a Via Láctea, como um grupo separado das estrelas foi provada somente no século XX, bem como a existência de galáxias "externas", e logo depois, a expansão do universo dada a recessão da maioria das galáxias de nós. A Cosmologia fez avanços enormes durante o século XX, com o modelo do Big Bang fortemente apoiado pelas evidências fornecidas pela Astronomia e pela Física, tais como a radiação cósmica de micro-ondas de fundo, a Lei de Hubble e a abundância cosmológica dos elementos.

Astronomia



Astronomia, que etimologicamente significa "lei das estrelas" com origem grego: (άστρο + νόμος)povos que acreditavam existir um ensinamento vindo das estrelas, é hoje uma ciência que se abre num leque de categorias complementares aos interesses da física, da matemática e da biologia. Envolve diversas observações procurando respostas aos fenômenos físicos que ocorrem dentro e fora da Terra bem como em sua atmosfera e estuda as origens, evolução e propriedades físicas e químicas de todos os objectos que podem ser observados no céu (e estão além da Terra), bem como todos os processos que os envolvem. Observações astronômicas não são relevantes apenas para a astronomia, mas também fornecem informações essenciais para a verificação de teorias fundamentais da física, tais como a teoria da relatividade geral.
A origem da astronomia se baseia na antiga (hoje considerada pseudociência) astrologia, praticada desde tempos remotos. Todos os povos desenvolveram, ao observar o céu, um ou outro tipo de calendário, para medir as variações do clima no decorrer do ano. A função primordial destes calendários era prever eventos cíclicos dos quais dependia a sobrevivência humana, como a chegada das chuvas ou do frio. Esse conhecimento empírico foi a base de classificações variadas dos corpos celestes. As primeiras ideias de constelação surgiram dessa necessidade de acompanhar o movimento dos planetas contra um quadro de referência fixo.
A Astronomia é uma das poucas ciências onde observadores independentes possuem um papel ativo, especialmente na descoberta e monitoração de fenômenos temporários. Muito embora seja a sua origem, a astronomia não deve ser confundida com Astrologia, o segmento de um estudo teórico que associava os fenômenos celestes com as coisas na terra (marés) , mas que se apresenta-se falho ao generalizar o comportamento e o destino da humanidade com as estrelas e planetas. Embora os dois casos compartilhem uma origem comum, seus segmentos hoje são bastante diferentes; a astronomia incorpora o método científico e associa observações científicas extraterrestres para confirmar algumas teorias terrenas (o hélio foi descoberto assim), enquanto a única base científica da astrologia foi correlacionar a posição dos principais astros da abóboda celeste (como o Sol e a Lua) com alguns fenômenos terrestres, como o movimento das marés, o clima ou a alternância de estações.

terça-feira, 14 de setembro de 2010

Eclipse lunar e solar







Eclipse Lunar:


Um eclipse lunar é um fenômeno celeste que ocorre quando a Lua penetra, totalmente ou parcialmente, no cone de sombra projetado pela Terra, em geral, sendo visível a olho nu. Isto ocorre sempre que o Sol, a Terra e a Lua se encontram próximos ou em perfeito alinhamento, estando a Terra no meio destes outros dois corpos. É como se fosse um eclipse solar porém a Terra encobre o sol nesse caso.
Por isso o eclipse lunar só pode ocorrer quando coincidem a fase de Lua cheia e a passagem dela pelo seu nodo orbital. Este último evento também é responsável pelo tipo e duração do eclipse.


O eclipse lunar ocorre sempre durante a fase da Lua cheia pois ela precisa estar atrás da Terra, do ponto de vista de um observador no Sol. Como o plano da órbita da Lua está inclinado 5° em relação ao plano da órbita que a Terra realiza ao redor do Sol, nem todas as fases de Lua cheia levam a ocorrência do eclipse.
O eclipse ocorre sempre que a fase de Lua cheia coincide com a passagem da Lua pelo plano da órbita da Terra. Este ponto onde a órbita da Lua se encontra com o plano da órbita da Terra chama-se nodo orbital. O nodo pode ser classificado como ascendente ou descendente, de acordo com a direção que a lua cruza o plano.
Ao contrário dos eclipses solares que são visíveis apenas em pequenas áreas da Terra, os eclipses lunares podem ser vistos em qualquer lugar da Terra em que seja noite no momento do eclipse.

Eclipse Solar:


Um eclipse solar assim chamado, é um raríssimo fenômeno de alinhamentos que ocorre quando a Lua se interpõe entre a Terra e o Sol, ocultando completamente a sua luz numa estreita faixa terrestre. Do ponto de vista de um observador fora da Terra, a coincidência é notada no ponto onde a ponta o cone de sombra risca a superfície do nosso Planeta.

Tipos de eclipses:
Há quatro tipos de eclipses solares:
  • O eclipse solar parcial: somente uma parte do sol é ocultada pelo disco lunar.
  • O eclipse solar total: toda a luminosidade do Sol é escondida pela Lua.
  • O eclipse anular, eclipse anelar ou eclipse em anel: um anel da luminisodade solar pode ser vista ao redor da lua, o que é provocado pelo fato do vértice do cone de sombra da Lua não estar atingindo a superfície da Terra, o que pode acontecer se a Lua estiver próxima de seu apogeu. Isso é similar à ocorrência do eclipse penumbral da lua.
  • O eclipse híbrido, quando a curvatura da Terra faz com que o eclipse seja observado como anular em alguns locais e total em outros. O eclipse total é visto nos pontos da superfície terrestre que estão ao longo do caminho do eclipse e estão fisicamente mais próximos à Lua, e podem, assim, serem atingidos pela umbra; outros locais, menos próximos da Lua devido à curvatura da Terra, caem na penumbra da lua, e enxergam um eclipse anular.
Eclipses solares podem ocorrer apenas durante a fase de Lua nova, por ser o período em que a Lua está posicionada entre a Terra e o Sol.

segunda-feira, 13 de setembro de 2010

Sistema Solar



O Sistema solar é constituído pelo Sol e pelo conjunto dos corpos celestes que se encontram no seu campo gravítico, e que compreende os planetas que atualmente compõem o sistema solar, em ordem de sol-espaço: Mercúrio, Vénus, Terra, Marte, Júpiter, Saturno, Urano, Neptuno. Plutão hoje em dia não é mais considerado um planeta embora esteja ainda no sistema solar e recentemente outros dois corpos da mesma categoria de Plutão foram descobertos nas regiões mais externas do sistema solar, conhecidas como Nuvem de Oort e Cinturão de Kuiper, dos quais ainda não se sabe muita coisa, e uma miríade de outros objectos de menor dimensão entre os quais se contam os corpos menores do Sistema Solar (asteroides, transneptunianos e cometas.




Ainda não se sabe, ao certo, como o sistema solar foi formado. Existem várias teorias, mas apenas uma é atualmente aceita. Trata-se da Teoria Nebular ou Hipótese Nebular.



O Sol começou a brilhar quando o núcleo atingiu 10 milhões de graus Celsius, temperatura suficiente para iniciar reações de fusão nuclear. A radiação acabou por gerar um vento solar muito forte, conhecido como "onda de choque", que espalhou o gás e poeira restantes das redondezas da estrela recém-nascida para os planetas que se acabaram de formar a partir de enormes colisões entre os protoplanetas.

 
 
A dimensão astronômica das distâncias no espaço


Para uma noção da dimensão astronômica das distâncias no espaço deve-se fazer cálculos e usar um modelo que permita uma percepção mais clara do que está em jogo. Por exemplo, um modelo reduzido em que o Sol estaria representado por uma bola de futebol (de 22 cm de diâmetro). A essa escala, a Terra ficaria a 23,6 metros de distância e seria uma esfera com apenas 2 mm de diâmetro (a Lua ficaria a uns 5 cm da Terra, e teria um diâmetro de uns 0,5 mm). Júpiter e Saturno seriam berlindes com cerca de 2 cm de diâmetro, respectivamente a 123 e a 226 metros do Sol. Plutão ficaria a 931 metros do Sol, com cerca de 0,36 mm de diâmetro. Quanto à estrela mais próxima, a Proxima Centauri, essa estaria a 6332 km do Sol, enquanto a estrela Sírio a 13 150 km.



Se o tempo de uma viagem da Terra à Lua, a cerca de 257 000 km/hora, fosse de uma hora e um quarto, levaria-se cerca de três semanas terrestres para se ir da Terra ao Sol, 3 meses se ir a Júpiter, sete meses para Saturno e cerca de dois anos e meio a chegar a Plutão e deixar o nosso sistema solar. A partir daí, a essa velocidade, levar-se-ia 17 600 anos até chegar à estrela mais próxima, e 35 000 anos até Sírio.



Estrutura do Sistema Solar


As órbitas dos planetas do Sistema Solar se encontram ordenadas a distâncias do Sol crescentes de modo que a distância de cada planeta é aproximadamente o dobro do que o planeta imediatamente anterior. Esta relação vem expressada matematicamente através da Lei de Titius-Bode, uma fórmula que resume a posição dos semieixos maiores dos planetas em unidades astronômicas (UA). Em sua forma mais simples se escreve:

onde = 0, 1, 2, 4, 8, 16, 32, 64, 128, ainda que pode chegar a ser complicada.

Nesta formulação, a órbita de Mercúrio se corresponde com (k=0) e semieixo maior 0,4 UA, e a órbita de Marte (k=4) se encontra em 1,6 UA. Na realidade, as órbitas se encontram em 0,38 e 1,52 UA. Ceres, o maior asteroide, encontra na posição k=8. Esta lei não se ajusta a todos os planetas (por exemplo, Netuno, que está mais acerca do que prediz esta lei). No momento não há uma explicação da Lei de Titius-Bode e muitos científicos consideram que se trata tão só de uma coincidência.

Sol



O Sol (do latim sol, solis[11]) é a estrela central do Sistema Solar. Todos os outros corpos do Sistema Solar, como planetas, planetas anões, asteroides, cometas e poeira, bem como todos os satélites associados a estes corpos, giram ao seu redor. Responsável por 99,86% da massa do Sistema Solar, o Sol possui uma massa 332 900 vezes maior que a da Terra, e um volume 1 300 000 vezes maior que o do nosso planeta.[12]




A distância da Terra ao Sol é de cerca de 150 milhões de quilômetros, ou 1 unidade astronômica (UA). Na verdade, esta distância varia com o ano, de um mínimo de 147,1 milhões de quilômetros (0,9833 UA) no perélio (ou periélio) a um máximo de 152,1 milhões de quilômetros (1,017 UA) no afélio (em torno de 4 de julho).[13] A luz solar demora aproximadamente 8 minutos e 18 segundos para chegar à Terra. Energia do Sol na forma de luz solar é armazenada em glicose por organismos vivos através da fotossíntese, processo do qual, direta ou indiretamente, dependem todos os seres vivos que habitam nosso planeta.[14] A energia do Sol também é responsável pelos fenômenos meteorológicos e o clima na Terra.[15]



É composto primariamente de hidrogênio (74% de sua massa, ou 92% de seu volume) e hélio (24% da massa solar, 7% do volume solar), com traços de outros elementos, incluindo ferro, níquel, oxigênio, silício, enxofre, magnésio, néon, cálcio e crômio.[16]



Possui a classe espectral de G2V: G2 indica que a estrela possui uma temperatura de superfície de aproximadamente 5 780 K, o que lhe confere uma cor branca (apesar de ser visto como amarelo no céu terrestre, o que se deve à dispersão dos raios na atmosfera);[17] O V (5 em números romanos) na classe espectral indica que o Sol, como a maioria das estrelas, faz parte da sequência principal. Isto significa que o astro gera sua energia através da fusão de núcleos de hidrogênio para a formação de hélio. Existem mais de 100 milhões de estrelas da classe G2 na Via Láctea. Considerado anteriormente uma estrela pequena, acredita-se atualmente que o Sol seja mais brilhante do que 85% das estrelas da Via Láctea, sendo a maioria dessas anãs vermelhas.[18][19] O espectro do Sol contém linhas espectrais de metais ionizados e neutros, bem como linhas de hidrogênio muito fracas.



A coroa solar expande-se continuamente no espaço, criando o vento solar, uma corrente de partículas carregadas que estende-se até a heliopausa, a cerca de 100 UA do Sol. A bolha no meio interestelar formada pelo vento solar, a heliosfera, é a maior estrutura contínua do Sistema Solar.[20][21]



O Sol orbita em torno do centro da Via Láctea, atravessando no momento a Nuvem Interestelar Local de gás de alta temperatura, no interior do Braço de Órion da Via Láctea, entre os braços maiores Perseus e Sagitário. Das 50 estrelas mais próximas do Sistema Solar, num raio de até 17 anos-luz da Terra, o Sol é a quarta maior em massa.[22] Diferentes valores de magnitude absoluta foram dados para o Sol, como, por exemplo, 4,85,[23] e 4,81.[24] O Sol orbita o centro da Via Láctea a uma distância de cerca de 24 a 26 mil anos-luz do centro galáctico, movendo-se geralmente na direção de Cygnus e completando uma órbita entre 225 a 250 milhões de anos (um ano galáctico). A estimativa mais recente e precisa da velocidade orbital do sol é da ordem de 251 km/s.[25][26]



Visto que a Via Láctea move-se na direção da constelação Hidra, com uma velocidade de 550 km/s, a velocidade do Sol relativa à radiação cósmica de fundo é de 370 km/s na direção da constelação.

Estrelas





Uma estrela é um corpo celeste luminoso formado de plasma. Como uma estrela possui sempre muita massa, sua gravidade a comprime, criando enormes pressões (e consequentemente muito calor) no seu interior, o que produz a fusão nuclear. A fusão nuclear gera a energia que mantém a expansão necessária para equilibrar sua compressão gravitacional. Assim, as estrelas estão sempre se contraindo pela gravidade e se expandindo pelas reações nucleares ao mesmo tempo, criando um equilíbrio. A energia gerada é emitida no espaço sob a forma de radiação electromagnética (da qual uma pequena parte é a luz visível), vento estelar, neutrinos e outras formas de radiação. A estrela mais próxima da Terra — depois do Sol, a principal responsável por sua iluminação — é Próxima Centauri, que fica a 40 trilhões de quilômetros, ou 4,2 anos-luz.




A energia emitida por uma estrela está associada a sua pressão e temperatura interna, que possibilita um ambiente adequado à fusão nuclear, que produz muita energia, unindo os núcleos de átomos mais leves para formar átomos mais pesados, esse processo ocorre principalmente na fusão do Hidrogênio para gerar Hélio. Tanto mais massa a estrela possui, mais capacidade ela tem de gerar átomos mais pesados pela fusão nuclear, porém, alguns átomos muito pesados não podem ser criados nas estrelas, sendo necessário outros processos aonde haja maiores temperaturas (como explosões de Supernovas). Uma estrela tem de ter uma massa acima de um determinado valor crítico (aproximadamente 81 vezes a massa de Júpiter) para que a pressão interior seja suficiente para ocorrerem reações nucleares de fusão no seu interior. Corpos que não atingem esse limite, mas que ainda assim irradiam energia por compressão gravitacional chamam-se anãs castanhas (ou anã marrom) e são um tipo de corpo celeste na fronteira entre as estrelas e os planetas, como gigantes gasosos. O limite superior de massa possível para uma estrela depende do limite de Eddington.




As estrelas menores que o Sol têm menor temperatura e seu brilho é alaranjado ou avermelhado. Assim como o Sol têm temperatura média e o seu brilho é amarelado. E as maiores têm maior temperatura e um brilho branco-azulado.



As estrelas visíveis aparecem como pontos brilhantes e cintilantes (por causa de distorção óptica causada pela atmosfera) no céu noturno, à exceção do Sol que devido a sua proximidade é visto como um disco e é o responsável pela luz do dia. O uso comum da palavra estrela nem sempre reflete o verdadeiro objeto astronômico: todos os pontos cintilantes no céu são frequentemente chamados de estrelas, apesar de poderem ser planetas visíveis, meteoros (estrelas cadentes), galáxias, nebulosas, cometas ou até mesmo um sistema binário formado por duas estrelas, como é o caso de Alpha Crux, que constitui a extremidade mais brilhante do Cruzeiro do Sul (ou Crux).





Descrição

São objetos de massas enormes compreendidas entre 0,08[1] e 120-200[2] massas solares (Msol). Os objetos de massa inferior se chamam anãs marrons ou castanhas enquanto que as estrelas de massa superior parecem não existir devido ao limite de Eddington. Sua luminosidade também tem uma categoria muito ampla indo desde a décima milésima à três milhões de vezes a luminosidade do Sol. O raio, a temperatura e a luminosidade de uma estrela podem-se relacionar mediante sua aproximação ao corpo negro.


Radiação Emitida


A energia produzida nas estrelas, como um subproduto da fusão nuclear, irradia no espaço tanto ma forma de radiação eletromagnética quanto de radiação de partículas. A Radiação de partículas emitida por uma estrela é manifestada na forma de vento estelar. [3] (que existe como um fluxo constante de partículas livres e carregadas, como prótons, partículas alfa, e partículas beta, emanados dos níveis externos da estrela, também um fluxo constante de neutrinos, emanados do núcleo da estrela. A produção de energia por fusão nuclear no núcleo é a razão pela qual as estrelas brilham tanto: a cada fusão nuclear (que ocorre constantemente), raios gama (fótons com altos níveis energéticos) são liberados. Conforme avança para os níveis externos da estrela, essa energia é convertida em outras formas de radiação eletromagnética, incluindo a luz visível. A cor de uma estrela, como determinada pelo pico de frequência da luz visível, depende da temperatura dos níveis externos da estrela, incluindo sua fotosfera[4]. Além da luz visível, as estrelas emitem muitas outras formas de radiação eletromagnética invisíveis ao olho humano, o que torna a observação desses corpos muito eficiente com a aparelhagem para detecção dessas radiações. De fato, a radiação eletromagnética estelar abrange todo o espectro eletromagnético, dos maiores comprimentos de ondas como ondas de rádio aos menores como raios gama.




Formação e evolução

Estrelas nascem em nuvens moleculares, grandes regiões de matéria de alta densidade (apesar dessa densidade ser um pouco menor do que aquela obtida numa câmara de vácuo na Terra), e se formam por instabilidade gravitacional nestas nuvens, causada por ondas de choque de uma supernova (estrelas de grande massa que iluminam com muita intensidade as nuvens que as formam). Um exemplo dessa reflexão é a Nebulosa de Órion.

Estrelas gastam 90% de suas vidas realizando a fusão nuclear do hidrogênio para produzir hélio em reações de alta pressão próximo ao seu centro. Tais estrelas estão na sequência principal do diagrama de Hertzsprung-Russell.

Pequenas estrelas (chamadas de anãs vermelhas) queimam seu combustível lentamente e costumam durar dezenas a centenas de bilhões de anos. No fim de suas vidas, elas simplesmente vão apagando até se tornarem anãs negras.

Conforme a maioria das estrelas esgota a sua reserva de hidrogênio, suas camadas externas expandem e esfriam formando uma gigante vermelha (em cerca de 5 bilhões de anos, quando o Sol já for uma gigante vermelha, ele terá engolido Mercúrio e Vênus).

Eventualmente, o núcleo será comprimido o suficiente para iniciar a fusão do hélio. Então a camada de hélio se aquece e expande, para em seguida esfriar e se contrair. A reação expulsa a matéria da área externa para o espaço, criando uma nebulosa planetária. O núcleo exposto irradia fótons ultravioleta que ionizam a camada ejetada, fazendo-a brilhar.

Estrelas maiores podem fundir elementos mais pesados, podendo queimar até mesmo ferro. O núcleo remanescente será uma anã branca, formada de matéria degenerada sem massa suficiente para provocar mais fusão, mantida apenas pela pressão de degenerescência. Essa mesma estrela vai se esvair em uma anã negra, numa escala de tempo extremamente longa.

Em estrelas maiores, a fusão continua até que o colapso gravitacional faça a estrela explodir em uma supernova. Esse é o único processo cósmico que acontece em escalas de tempo humanas. Historicamente, supernovas têm sido observadas como "novas estrelas" onde antes não havia nenhuma.

A maior parte da matéria numa estrela é expelida na explosão (formando uma nebulosa como a Nebulosa do Caranguejo) mas o que sobra vai entrar em colapso e formar uma estrela de nêutrons (um pulsar ou emissor de raios X) ou, no caso das estrelas maiores, um buraco negro).

A camada externa expelida inclui elementos pesados, que são comumente convertidos em novas estrelas e/ou planetas. O fluxo da supernova e o vento solar de grandes estrelas é muito importante na formação do meio interestelar.



Os nomes das estrelas

Existem diversos sistemas de denominação estelar. Os mais antigos partem das constelações, denominando as estrelas componentes com uma letra grega em ordem alfabética, aproximadamente em ordem de luminosidade aparente na constelação; esta é seguida pelo nome da constelação, tradicionalmente em latim: como Centaurus (Centauro), com a estrela Alpha Centauri (α cen), a estrela mais brilhante de Centaurus. Devido à numerosidade de estrelas, grandes catálogos estelares que surgiram passaram a nominá-las numericamente, adicionando-se-lhe o prefixo que denota o catálogo seguido pelo número da estrela (ex. HIP 87937). Outros sistemas surgiram ao nominá-las de acordo com sua posição no céu (como ascensão reta/declinação), a partir de grandes varreduras computadorizadas que catalogam objetos (ex.: SDSSp J153259.96-003944.1, donde SDSS, Sloan Digital Sky Survey, é o nome da varredura digitalizada e o restante suas coordenadas celestes). O órgão responsável por denominar estrelas reconhecido pela comunidade científica é o International Astronomical Union. Um número de companhias privadas tenta vender nomes para as estrelas; esses nomes, entretanto, não são reconhecidos pela comunidade científica, nem usados por ela. Essas organizações são vistas como fraudulentas, que se aproveitam da ignorância das pessoas sobre a maneira com que uma estrela é denominada.