segunda-feira, 13 de setembro de 2010

Estrelas





Uma estrela é um corpo celeste luminoso formado de plasma. Como uma estrela possui sempre muita massa, sua gravidade a comprime, criando enormes pressões (e consequentemente muito calor) no seu interior, o que produz a fusão nuclear. A fusão nuclear gera a energia que mantém a expansão necessária para equilibrar sua compressão gravitacional. Assim, as estrelas estão sempre se contraindo pela gravidade e se expandindo pelas reações nucleares ao mesmo tempo, criando um equilíbrio. A energia gerada é emitida no espaço sob a forma de radiação electromagnética (da qual uma pequena parte é a luz visível), vento estelar, neutrinos e outras formas de radiação. A estrela mais próxima da Terra — depois do Sol, a principal responsável por sua iluminação — é Próxima Centauri, que fica a 40 trilhões de quilômetros, ou 4,2 anos-luz.




A energia emitida por uma estrela está associada a sua pressão e temperatura interna, que possibilita um ambiente adequado à fusão nuclear, que produz muita energia, unindo os núcleos de átomos mais leves para formar átomos mais pesados, esse processo ocorre principalmente na fusão do Hidrogênio para gerar Hélio. Tanto mais massa a estrela possui, mais capacidade ela tem de gerar átomos mais pesados pela fusão nuclear, porém, alguns átomos muito pesados não podem ser criados nas estrelas, sendo necessário outros processos aonde haja maiores temperaturas (como explosões de Supernovas). Uma estrela tem de ter uma massa acima de um determinado valor crítico (aproximadamente 81 vezes a massa de Júpiter) para que a pressão interior seja suficiente para ocorrerem reações nucleares de fusão no seu interior. Corpos que não atingem esse limite, mas que ainda assim irradiam energia por compressão gravitacional chamam-se anãs castanhas (ou anã marrom) e são um tipo de corpo celeste na fronteira entre as estrelas e os planetas, como gigantes gasosos. O limite superior de massa possível para uma estrela depende do limite de Eddington.




As estrelas menores que o Sol têm menor temperatura e seu brilho é alaranjado ou avermelhado. Assim como o Sol têm temperatura média e o seu brilho é amarelado. E as maiores têm maior temperatura e um brilho branco-azulado.



As estrelas visíveis aparecem como pontos brilhantes e cintilantes (por causa de distorção óptica causada pela atmosfera) no céu noturno, à exceção do Sol que devido a sua proximidade é visto como um disco e é o responsável pela luz do dia. O uso comum da palavra estrela nem sempre reflete o verdadeiro objeto astronômico: todos os pontos cintilantes no céu são frequentemente chamados de estrelas, apesar de poderem ser planetas visíveis, meteoros (estrelas cadentes), galáxias, nebulosas, cometas ou até mesmo um sistema binário formado por duas estrelas, como é o caso de Alpha Crux, que constitui a extremidade mais brilhante do Cruzeiro do Sul (ou Crux).





Descrição

São objetos de massas enormes compreendidas entre 0,08[1] e 120-200[2] massas solares (Msol). Os objetos de massa inferior se chamam anãs marrons ou castanhas enquanto que as estrelas de massa superior parecem não existir devido ao limite de Eddington. Sua luminosidade também tem uma categoria muito ampla indo desde a décima milésima à três milhões de vezes a luminosidade do Sol. O raio, a temperatura e a luminosidade de uma estrela podem-se relacionar mediante sua aproximação ao corpo negro.


Radiação Emitida


A energia produzida nas estrelas, como um subproduto da fusão nuclear, irradia no espaço tanto ma forma de radiação eletromagnética quanto de radiação de partículas. A Radiação de partículas emitida por uma estrela é manifestada na forma de vento estelar. [3] (que existe como um fluxo constante de partículas livres e carregadas, como prótons, partículas alfa, e partículas beta, emanados dos níveis externos da estrela, também um fluxo constante de neutrinos, emanados do núcleo da estrela. A produção de energia por fusão nuclear no núcleo é a razão pela qual as estrelas brilham tanto: a cada fusão nuclear (que ocorre constantemente), raios gama (fótons com altos níveis energéticos) são liberados. Conforme avança para os níveis externos da estrela, essa energia é convertida em outras formas de radiação eletromagnética, incluindo a luz visível. A cor de uma estrela, como determinada pelo pico de frequência da luz visível, depende da temperatura dos níveis externos da estrela, incluindo sua fotosfera[4]. Além da luz visível, as estrelas emitem muitas outras formas de radiação eletromagnética invisíveis ao olho humano, o que torna a observação desses corpos muito eficiente com a aparelhagem para detecção dessas radiações. De fato, a radiação eletromagnética estelar abrange todo o espectro eletromagnético, dos maiores comprimentos de ondas como ondas de rádio aos menores como raios gama.




Formação e evolução

Estrelas nascem em nuvens moleculares, grandes regiões de matéria de alta densidade (apesar dessa densidade ser um pouco menor do que aquela obtida numa câmara de vácuo na Terra), e se formam por instabilidade gravitacional nestas nuvens, causada por ondas de choque de uma supernova (estrelas de grande massa que iluminam com muita intensidade as nuvens que as formam). Um exemplo dessa reflexão é a Nebulosa de Órion.

Estrelas gastam 90% de suas vidas realizando a fusão nuclear do hidrogênio para produzir hélio em reações de alta pressão próximo ao seu centro. Tais estrelas estão na sequência principal do diagrama de Hertzsprung-Russell.

Pequenas estrelas (chamadas de anãs vermelhas) queimam seu combustível lentamente e costumam durar dezenas a centenas de bilhões de anos. No fim de suas vidas, elas simplesmente vão apagando até se tornarem anãs negras.

Conforme a maioria das estrelas esgota a sua reserva de hidrogênio, suas camadas externas expandem e esfriam formando uma gigante vermelha (em cerca de 5 bilhões de anos, quando o Sol já for uma gigante vermelha, ele terá engolido Mercúrio e Vênus).

Eventualmente, o núcleo será comprimido o suficiente para iniciar a fusão do hélio. Então a camada de hélio se aquece e expande, para em seguida esfriar e se contrair. A reação expulsa a matéria da área externa para o espaço, criando uma nebulosa planetária. O núcleo exposto irradia fótons ultravioleta que ionizam a camada ejetada, fazendo-a brilhar.

Estrelas maiores podem fundir elementos mais pesados, podendo queimar até mesmo ferro. O núcleo remanescente será uma anã branca, formada de matéria degenerada sem massa suficiente para provocar mais fusão, mantida apenas pela pressão de degenerescência. Essa mesma estrela vai se esvair em uma anã negra, numa escala de tempo extremamente longa.

Em estrelas maiores, a fusão continua até que o colapso gravitacional faça a estrela explodir em uma supernova. Esse é o único processo cósmico que acontece em escalas de tempo humanas. Historicamente, supernovas têm sido observadas como "novas estrelas" onde antes não havia nenhuma.

A maior parte da matéria numa estrela é expelida na explosão (formando uma nebulosa como a Nebulosa do Caranguejo) mas o que sobra vai entrar em colapso e formar uma estrela de nêutrons (um pulsar ou emissor de raios X) ou, no caso das estrelas maiores, um buraco negro).

A camada externa expelida inclui elementos pesados, que são comumente convertidos em novas estrelas e/ou planetas. O fluxo da supernova e o vento solar de grandes estrelas é muito importante na formação do meio interestelar.



Os nomes das estrelas

Existem diversos sistemas de denominação estelar. Os mais antigos partem das constelações, denominando as estrelas componentes com uma letra grega em ordem alfabética, aproximadamente em ordem de luminosidade aparente na constelação; esta é seguida pelo nome da constelação, tradicionalmente em latim: como Centaurus (Centauro), com a estrela Alpha Centauri (α cen), a estrela mais brilhante de Centaurus. Devido à numerosidade de estrelas, grandes catálogos estelares que surgiram passaram a nominá-las numericamente, adicionando-se-lhe o prefixo que denota o catálogo seguido pelo número da estrela (ex. HIP 87937). Outros sistemas surgiram ao nominá-las de acordo com sua posição no céu (como ascensão reta/declinação), a partir de grandes varreduras computadorizadas que catalogam objetos (ex.: SDSSp J153259.96-003944.1, donde SDSS, Sloan Digital Sky Survey, é o nome da varredura digitalizada e o restante suas coordenadas celestes). O órgão responsável por denominar estrelas reconhecido pela comunidade científica é o International Astronomical Union. Um número de companhias privadas tenta vender nomes para as estrelas; esses nomes, entretanto, não são reconhecidos pela comunidade científica, nem usados por ela. Essas organizações são vistas como fraudulentas, que se aproveitam da ignorância das pessoas sobre a maneira com que uma estrela é denominada.

Nenhum comentário:

Postar um comentário